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Boolean Functions

f : {−1, 1}n → {−1, 1}.

Applications of Boolean functions:

Circuit design.

Learning theory.

Voting rule for election with n voters and 2 candidates {−1, 1}; social
choice theory.
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Majority, Linear Threshold Functions

Convention: x ∈ {−1, 1}n; x1, x2, . . . , xn are coordinates of x .

Majority function: Majn(x) = sgn(x1 + x2 + · · ·+ xn).

(-1, -1, -1)

(1, 1, 1)

(1, -1, -1)

(-1, 1, -1)

f is linear threshold function (weighted majority) if

f (x) = sgn(a0 + a1x1 + · · ·+ anxn).
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AND, OR, Tribes

−1↔ True, 1↔ False.

ANDn(x) = x1 ∧ x2 ∧ · · · ∧ xn.

ORn(x) = x1 ∨ x2 ∨ · · · ∨ xn.

Tribesw ,s(x1, . . . , xsw ) = (x1 ∧ · · · ∧ xw ) ∨ · · · ∨ (x(s−1)w ∧ · · · ∧ xsw ).

n = ws is number of voters.
s tribes, w people per tribe.

x1 xw x(s−1)w xsw

∧ ∧

∨

· · · · · ·

· · ·

· · ·
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Influence

Definition

Impartial culture assumption: n votes independent, uniformly random:
x ∼ {−1, 1}n.

Influence at coordinate i , Infi : prob. that voter i changes outcome.
Influence of f : I[f ] =

∑n
i=1 Infi [f ].

Example: I[Maj3(x)] = 3/2.

(-1, -1, -1)

(1, 1, 1)
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Oops

Nassau County (NY) voting system:

f (x) = sgn(−58 + 31x1 + 31x2 + 28x3 + 21x4 + 2x5 + 2x6).

Some towns have 0 influence!

Lawyer Banzhaf sued Nassau County board (1965).
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Influences of Tribes, Majority

f monotone: x ≤ y coordinate-wise ⇒ f (x) ≤ f (y).

Theorem

I[f ] ≤ I[Majn] =
√

2/π
√
n + O(n−1/2) for all monotone f .

For n = ws, define Tribesn = Tribesw ,s with w , s such that Tribesw ,s
is essentially unbiased.

Infi [Tribesn] = ln n
n · (1 + o(1)).

Theorem (Kahn, Kalai, Linial)

MaxInf[f ] ≥ Var[f ] · Ω( log nn ).

Application: bribing voters.
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Noise Stability

Another important property of Boolean functions: noise stability.

Definition

For a fixed x ∈ {−1, 1}n and ρ ∈ [0, 1], y is ρ-correlated with x if, for each
coordinate i ,

yi =

{
xi with probability ρ

randomly chosen with probability 1− ρ
.

Definition

For a Boolean function f and ρ ∈ [0, 1], the noise stability of f at ρ is

Stabρ[f ] = E [f (x)f (y)].

for x uniformly random and y ρ-correlated with x.
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Noise Stability: Voting Example

Imagine:

Voting system represented by f .

Some chance 1−ρ
2 that the vote is misrecorded.

Noise stability: measure of how much f is resistant to misrecorded
votes.
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The Noise Stability of Majority

Natural question: what is the noise stability of Majority?

Theorem

For any ρ ∈ [0, 1], limn→∞ Stabρ[Majn] = 2
π arcsin ρ.

General idea of proof: use the multidimensional central limit theorem.

Theorem (Majority is Stablest)

Among Boolean functions that are unbiased and have only small influences,
the Majority function has approximately the largest noise stability.
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Arrow’s Theorem: The Idea

Noise stability also key in proving Arrow’s Theorem. In particular,
consider:

Two candidate elections: most fair voting rule is Majority.

Three candidate elections: not clear how to conduct the election.

One possibility: conduct pairwise Condorcet elections, each of which
is evaluated by some voting rule f .

The Condorcet winner is the candidate that wins all his/her elections.

May not always occur: might be some situations in which each
candidate loses a pairwise election.

Goal: find a function in which this contradiction never occurs.
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Example: Contradiction with f Majority

Example of contradiction: candidates A, B, C ; voters x1, x2, and x3;
voting rule is Majority function.

x1 x2 x3
A vs. B A B A
A vs. C C C A
B vs. C C B B

A wins the pairwise election with B.

C wins the pairwise election with A.

B wins the pairwise election with C.

There is no Condorcet winner!
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Arrow’s Theorem: The Statement

Theorem (Arrow’s Theorem)

In an n-candidate Condorcet election, if there is always a Condorcet
winner, then f (x) = ±xi for some i (dictatorship).

The case n = 3 follows from the below result: connects it to stability.

Theorem

In a 3-candidate Condorcet election, the probability of a Condorcet winner
is exactly 3/4(1− Stab−1/3[f ]).

Dictator: only function for which Stab−1/3[f ] = −1/3⇒
3
4(1− Stab−1/3[f ]) = 1.
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Peres’s Theorem

Noise sensitivity of f at δ is probability that misrecorded votes change
outcome:

NSδ[f ] =
1

2
− 1

2
Stab1−2δ[f ].

Theorem (Peres, 1999)

For any LTF f , NSδ[f ] ≤ O(
√
δ).

limn→∞NSδ[Majn] = 2
π

√
δ + O(δ3/2).
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Applications of Peres’s theorem

Application: learning theory.

?

? ?

?

Corollary

An AND of 2 LTFs is learnable with error ε in time nO(1/ε2).

Open problem: extend Peres’s theorem to polynomial threshold functions:
sgn(p(x)).
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Fourier Analysis of Boolean Functions

How to prove many of theorems: Fourier expansions, a representation of
the function as a real, multilinear polynomial.

For example, max2(x1, x2), outputs the maximum of x1 and x2:

max2(x1, x2) =
1

2
+

1

2
x1 +

1

2
x2 −

1

2
x1x2.
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Uniqueness of the Fourier Expansion

For a given f : always exists a Fourier expansion. In particular:

Theorem

Every Boolean function can be uniquely expressed as a multilinear
polynomial, called its Fourier expansion,

f (x) =
∑
S⊆[n]

f̂ (S)xS ,

where xS =
∏

i∈S xi .

Coefficients f̂ (S): Fourier spectrum of f .
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Parseval’s and Plancherel’s Theorems

Theorem (Plancherel)

For any Boolean functions f and g ,

E[f (x)g(x)] =
∑
S⊆[n]

f̂ (S)ĝ(S).

Applies equally well to real-valued functions. Also yields corollary:

Theorem (Parseval)

For any Boolean function f ,∑
S⊆[n]

f̂ (S)2 = E [f (x)2] = 1.
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Fourier Expansions for Stability, Influence

Theorem

For any Boolean function f and i ∈ [n],

Infi [f ] =
∑
S3i

f̂ (S)2.

Theorem

For any Boolean function f ,

Stabρ[f ] =
∑
S⊆[n]

ρ|S |f̂ (S)2.
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Summary and Conclusion

In summary:

Looked at Boolean functions in the context of social choice theory
and voting.

Fourier expansions of these functions along with noise stability and
influence: allowed us to prove Arrow’s Theorem and Peres’s Theorem.

Not just limited to voting theory:

Learning theory.

Circuit design.
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