Analysis of Boolean Functions

Kavish Gandhi and Noah Golowich

Mentor: Yufei Zhao

5th Annual MIT-PRIMES Conference

"Analysis of Boolean Functions", Ryan O'Donnell

May 16, 2015

$f:\{-1,1\}^n\to\{-1,1\}.$

- 《圖》 《문》 《문》

æ

 $f:\{-1,1\}^n\to\{-1,1\}.$

Applications of Boolean functions:

- Circuit design.
- Learning theory.

э

 $f:\{-1,1\}^n\to\{-1,1\}.$

Applications of Boolean functions:

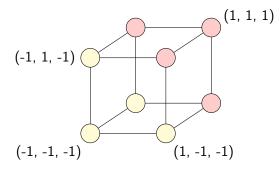
- Circuit design.
- Learning theory.
- Voting rule for election with *n* voters and 2 candidates {-1,1}; social choice theory.

Majority, Linear Threshold Functions

• Convention: $x \in \{-1, 1\}^n$; x_1, x_2, \ldots, x_n are coordinates of x.

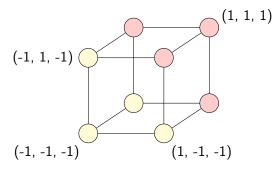
Majority, Linear Threshold Functions

- Convention: $x \in \{-1, 1\}^n$; x_1, x_2, \ldots, x_n are coordinates of x.
- Majority function: $\operatorname{Maj}_n(x) = \operatorname{sgn}(x_1 + x_2 + \cdots + x_n)$.



Majority, Linear Threshold Functions

- Convention: $x \in \{-1, 1\}^n$; x_1, x_2, \ldots, x_n are coordinates of x.
- Majority function: $\operatorname{Maj}_n(x) = \operatorname{sgn}(x_1 + x_2 + \cdots + x_n)$.



• f is linear threshold function (weighted majority) if

$$f(x) = \operatorname{sgn}(a_0 + a_1x_1 + \cdots + a_nx_n).$$

AND, OR, Tribes

- $-1 \leftrightarrow \text{True}, 1 \leftrightarrow \text{False}.$
- $AND_n(x) = x_1 \wedge x_2 \wedge \cdots \wedge x_n$.
- $OR_n(x) = x_1 \lor x_2 \lor \cdots \lor x_n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

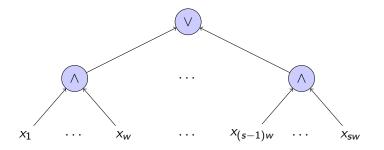
3

AND, OR, Tribes

- $-1 \leftrightarrow$ True, $1 \leftrightarrow$ False.
- $AND_n(x) = x_1 \wedge x_2 \wedge \cdots \wedge x_n$.
- $OR_n(x) = x_1 \lor x_2 \lor \cdots \lor x_n$.

• Tribes_{*w*,s}(x_1, \ldots, x_{sw}) = ($x_1 \land \cdots \land x_w$) $\lor \cdots \lor (x_{(s-1)w} \land \cdots \land x_{sw})$.

- *n* = *ws* is number of voters.
- s tribes, w people per tribe.



Influence

Definition

Impartial culture assumption: *n* votes independent, uniformly random: $\mathbf{x} \sim \{-1, 1\}^n$.

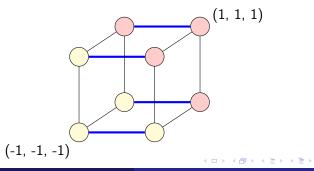
_ ₽ ▶

Influence

Definition

Impartial culture assumption: *n* votes independent, uniformly random: $\mathbf{x} \sim \{-1, 1\}^n$.

- Influence at coordinate *i*, Inf_{*i*}: prob. that voter *i* changes outcome.
- Influence of f: $\mathbf{I}[f] = \sum_{i=1}^{n} \mathbf{Inf}_i[f]$.
- Example: $I[Maj_3(x)] = 3/2$.



• Nassau County (NY) voting system:

$$f(x) = \operatorname{sgn}(-58 + 31x_1 + 31x_2 + 28x_3 + 21x_4 + 2x_5 + 2x_6).$$

æ

aP ► < E

• Nassau County (NY) voting system:

$$f(x) = \operatorname{sgn}(-58 + 31x_1 + 31x_2 + 28x_3 + 21x_4 + 2x_5 + 2x_6).$$

• Some towns have 0 influence!

• Nassau County (NY) voting system:

$$f(x) = \operatorname{sgn}(-58 + 31x_1 + 31x_2 + 28x_3 + 21x_4 + 2x_5 + 2x_6).$$

- Some towns have 0 influence!
- Lawyer Banzhaf sued Nassau County board (1965).

f monotone: $x \leq y$ coordinate-wise $\Rightarrow f(x) \leq f(y)$.

Theorem

$$\mathbf{I}[f] \leq \mathbf{I}[Maj_n] = \sqrt{2/\pi}\sqrt{n} + O(n^{-1/2})$$
 for all monotone f .

A 10

f monotone: $x \leq y$ coordinate-wise $\Rightarrow f(x) \leq f(y)$.

Theorem

- $\mathbf{I}[f] \leq \mathbf{I}[Maj_n] = \sqrt{2/\pi}\sqrt{n} + O(n^{-1/2})$ for all monotone f.
 - For *n* = *ws*, define Tribes_{*n*} = Tribes_{*w*,*s*} with *w*, *s* such that Tribes_{*w*,*s*} is essentially unbiased.
 - $\mathbf{Inf}_i[\mathrm{Tribes}_n] = \frac{\ln n}{n} \cdot (1 + o(1)).$

f monotone: $x \leq y$ coordinate-wise $\Rightarrow f(x) \leq f(y)$.

Theorem

$$\mathbf{I}[f] \leq \mathbf{I}[Maj_n] = \sqrt{2/\pi}\sqrt{n} + O(n^{-1/2})$$
 for all monotone f .

• For *n* = *ws*, define Tribes_{*n*} = Tribes_{*w*,*s*} with *w*, *s* such that Tribes_{*w*,*s*} is essentially unbiased.

•
$$\mathbf{Inf}_i[\mathrm{Tribes}_n] = \frac{\ln n}{n} \cdot (1 + o(1)).$$

Theorem (Kahn, Kalai, Linial)

 $\mathsf{MaxInf}[f] \ge \mathsf{Var}[f] \cdot \Omega(\frac{\log n}{n}).$

f monotone: $x \leq y$ coordinate-wise $\Rightarrow f(x) \leq f(y)$.

Theorem

- $\mathbf{I}[f] \leq \mathbf{I}[Maj_n] = \sqrt{2/\pi}\sqrt{n} + O(n^{-1/2})$ for all monotone f.
 - For n = ws, define Tribes_n = Tribes_{w,s} with w, s such that Tribes_{w,s} is essentially unbiased.

《聞》 《臣》 《臣》

• $\operatorname{Inf}_i[\operatorname{Tribes}_n] = \frac{\ln n}{n} \cdot (1 + o(1)).$

Theorem (Kahn, Kalai, Linial)

 $\mathsf{MaxInf}[f] \ge \mathsf{Var}[f] \cdot \Omega(\frac{\log n}{n}).$

• Application: bribing voters.

Another important property of Boolean functions: noise stability.

Noise Stability

Another important property of Boolean functions: noise stability.

Definition

For a fixed $x \in \{-1,1\}^n$ and $\rho \in [0,1]$, **y** is ρ -correlated with x if, for each coordinate *i*,

$$\mathbf{y}_i = egin{cases} x_i & ext{with probability }
ho \ ext{randomly chosen} & ext{with probability } 1 -
ho \ .$$

Noise Stability

Another important property of Boolean functions: noise stability.

Definition

For a fixed $x \in \{-1, 1\}^n$ and $\rho \in [0, 1]$, **y** is ρ -correlated with x if, for each coordinate *i*,

$$\mathbf{y}_{i} = \begin{cases} x_{i} & \text{with probability } \rho \\ \text{randomly chosen} & \text{with probability } 1 - \rho \end{cases}$$

Definition

For a Boolean function f and $\rho \in [0, 1]$, the noise stability of f at ρ is

 $\mathbf{Stab}_{\rho}[f] = E[f(\mathbf{x})f(\mathbf{y})].$

Image: A image: A

for **x** uniformly random and **y** ρ -correlated with **x**.

æ

• Voting system represented by *f*.

- Voting system represented by f.
- Some chance $\frac{1-\rho}{2}$ that the vote is misrecorded.

- Voting system represented by f.
- Some chance $\frac{1-\rho}{2}$ that the vote is misrecorded.
- Noise stability: measure of how much *f* is resistant to misrecorded votes.

Theorem

For any $\rho \in [0, 1]$, $\lim_{n \to \infty} \operatorname{Stab}_{\rho}[\operatorname{Maj}_n] = \frac{2}{\pi} \operatorname{arcsin} \rho$.

Theorem For any $\rho \in [0, 1]$, $\lim_{n\to\infty} \mathbf{Stab}_{\rho}[Maj_n] = \frac{2}{\pi} \arcsin \rho$.

General idea of proof: use the multidimensional central limit theorem.

Theorem

For any
$$\rho \in [0, 1]$$
, $\lim_{n \to \infty} \mathbf{Stab}_{\rho}[Maj_n] = \frac{2}{\pi} \arcsin \rho$.

General idea of proof: use the multidimensional central limit theorem.

Theorem (Majority is Stablest)

Among Boolean functions that are unbiased and have only small influences, the Majority function has approximately the largest noise stability.

• Two candidate elections: most fair voting rule is Majority.

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
- One possibility: conduct pairwise *Condorcet* elections, each of which is evaluated by some voting rule *f*.

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
- One possibility: conduct pairwise *Condorcet* elections, each of which is evaluated by some voting rule *f*.
- The Condorcet winner is the candidate that wins all his/her elections.

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
- One possibility: conduct pairwise *Condorcet* elections, each of which is evaluated by some voting rule *f*.
- The Condorcet winner is the candidate that wins all his/her elections.
- May not always occur: might be some situations in which each candidate loses a pairwise election.

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
- One possibility: conduct pairwise *Condorcet* elections, each of which is evaluated by some voting rule *f*.
- The Condorcet winner is the candidate that wins all his/her elections.
- May not always occur: might be some situations in which each candidate loses a pairwise election.
- Goal: find a function in which this contradiction never occurs.

Example: Contradiction with f Majority

				<i>x</i> ₂	-
А	VS.	В	A	В	А
А	VS.	С	C	С	А
В	VS.	С	C	В	В

			x_1	<i>x</i> ₂	<i>x</i> 3
А	VS.	В	A	В	А
	vs.	С	C	С	А
В	VS.	С	C	В	В

- A wins the pairwise election with B.
- C wins the pairwise election with A.
- B wins the pairwise election with C.

			x_1	<i>x</i> ₂	<i>x</i> 3
А	VS.	В	A	В	А
А	vs.	С	C	С	А
В	VS.	С	C	В	В

- A wins the pairwise election with B.
- C wins the pairwise election with A.
- B wins the pairwise election with C.
- There is no Condorcet winner!

In an n-candidate Condorcet election, if there is always a Condorcet winner, then $f(x) = \pm x_i$ for some *i* (dictatorship).

In an n-candidate Condorcet election, if there is always a Condorcet winner, then $f(x) = \pm x_i$ for some *i* (dictatorship).

The case n = 3 follows from the below result: connects it to stability.

In an n-candidate Condorcet election, if there is always a Condorcet winner, then $f(x) = \pm x_i$ for some *i* (dictatorship).

The case n = 3 follows from the below result: connects it to stability.

Theorem

In a 3-candidate Condorcet election, the probability of a Condorcet winner is exactly $3/4(1 - \text{Stab}_{-1/3}[f])$.

In an n-candidate Condorcet election, if there is always a Condorcet winner, then $f(x) = \pm x_i$ for some *i* (dictatorship).

The case n = 3 follows from the below result: connects it to stability.

Theorem

In a 3-candidate Condorcet election, the probability of a Condorcet winner is exactly $3/4(1 - \text{Stab}_{-1/3}[f])$.

Dictator: only function for which $\mathbf{Stab}_{-1/3}[f] = -1/3 \Rightarrow \frac{3}{4}(1 - \mathbf{Stab}_{-1/3}[f]) = 1.$

• Noise sensitivity of f at δ is probability that misrecorded votes change outcome:

$$\mathsf{NS}_{\delta}[f] = \frac{1}{2} - \frac{1}{2}\mathsf{Stab}_{1-2\delta}[f].$$

Theorem (Peres, 1999)

For any LTF f, $NS_{\delta}[f] \leq O(\sqrt{\delta})$.

• Noise sensitivity of f at δ is probability that misrecorded votes change outcome:

$$\mathsf{NS}_{\delta}[f] = \frac{1}{2} - \frac{1}{2}\mathsf{Stab}_{1-2\delta}[f].$$

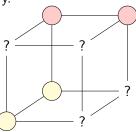
Theorem (Peres, 1999)

For any LTF f, $NS_{\delta}[f] \leq O(\sqrt{\delta})$.

•
$$\lim_{n\to\infty} \mathbf{NS}_{\delta}[\operatorname{Maj}_n] = \frac{2}{\pi}\sqrt{\delta} + O(\delta^{3/2}).$$

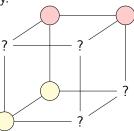
Applications of Peres's theorem

Application: learning theory.



Applications of Peres's theorem

Application: learning theory.



Corollary

An AND of 2 LTFs is learnable with error ϵ in time $n^{O(1/\epsilon^2)}$.

Open problem: extend Peres's theorem to polynomial threshold functions: sgn(p(x)).

How to prove many of theorems: Fourier expansions, a representation of the function as a real, multilinear polynomial.

How to prove many of theorems: Fourier expansions, a representation of the function as a real, multilinear polynomial.

For example, $\max_2(x_1, x_2)$, outputs the maximum of x_1 and x_2 :

$$\max_2(x_1, x_2) = \frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1x_2.$$

For a given f: always exists a Fourier expansion. In particular:

Theorem

Every Boolean function can be uniquely expressed as a multilinear polynomial, called its Fourier expansion,

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) x^S,$$

where $x^{S} = \prod_{i \in S} x_{i}$.

For a given f: always exists a Fourier expansion. In particular:

Theorem

Every Boolean function can be uniquely expressed as a multilinear polynomial, called its Fourier expansion,

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) x^S,$$

where $x^{S} = \prod_{i \in S} x_{i}$.

Coefficients $\hat{f}(S)$: Fourier spectrum of f.

Theorem (Plancherel)

For any Boolean functions f and g,

$$\mathbf{E}[f(\mathbf{x})g(\mathbf{x})] = \sum_{S \subseteq [n]} \hat{f}(S)\hat{g}(S).$$

Applies equally well to real-valued functions. Also yields corollary:

Theorem (Plancherel)

For any Boolean functions f and g,

$$\mathbf{E}[f(\mathbf{x})g(\mathbf{x})] = \sum_{S \subseteq [n]} \hat{f}(S)\hat{g}(S).$$

Applies equally well to real-valued functions. Also yields corollary:

Theorem (Parseval)

For any Boolean function f,

$$\sum_{S\subseteq [n]} \hat{f}(S)^2 = E[f(\mathbf{x})^2] = 1.$$

Theorem

For any Boolean function f and $i \in [n]$,

$$\mathsf{lnf}_i[f] = \sum_{S \ni i} \hat{f}(S)^2.$$

Theorem

For any Boolean function f and $i \in [n]$,

$$\mathbf{nf}_i[f] = \sum_{S \ni i} \hat{f}(S)^2.$$

Theorem

For any Boolean function f,

$$\operatorname{Stab}_{\rho}[f] = \sum_{S \subseteq [n]} \rho^{|S|} \hat{f}(S)^2.$$

æ

• Looked at Boolean functions in the context of social choice theory and voting.

- Looked at Boolean functions in the context of social choice theory and voting.
- Fourier expansions of these functions along with noise stability and influence: allowed us to prove Arrow's Theorem and Peres's Theorem.

- Looked at Boolean functions in the context of social choice theory and voting.
- Fourier expansions of these functions along with noise stability and influence: allowed us to prove Arrow's Theorem and Peres's Theorem.

Not just limited to voting theory:

- Looked at Boolean functions in the context of social choice theory and voting.
- Fourier expansions of these functions along with noise stability and influence: allowed us to prove Arrow's Theorem and Peres's Theorem.

Not just limited to voting theory:

- Learning theory.
- Circuit design.

We would like to thank:

- Yufei Zhao
- MIT-PRIMES
- Our parents